Data
Modernization—
A Future State

Modernization programs across all industries have largely stalled or have not
driven the expected value. Without new approaches, the inability to modernize the
data layer at the required velocity will continue to hamper the present and future
demands of today’s enterprises to innovate and compete with data.

The good news is that enterprises that choose to invest in modernizing the data
layer using new approaches can quickly accelerate and create an innovation gap
with their competition. This document describes how to think about data platform
modernization, how to select and prioritize systems to modernize, and the outcomes
that can be achieved.

DataStax

01
Where We Are Today

A recent Government Accountability Office report’
analyzed the top 10 most critical systems of 65
federal agencies, finding the age for these critical
systems was between 8 and 51 years.

The age of these systems and the technology stacks they are based on will put an
increasing financial burden on the $90B budget, 80% of which is allocated to maintain
existing systems. Out of these top 10 most critical systems, only three had planned
modernization programs. This pattern repeats in every industry and in every vertical.

Broadly, the applications in the Enterprise landscape fall into two major categories.

© The fast lane: Transactional systems that capture core data that powers the
Business and Mission critical functions of the Enterprise.

© The deep lane: Analytical systems that are used for reporting and analysis outside
the transactional flows, but on the data gathered by those flows—often from many
disparate systems.

Updating the deep lane is often a straightforward replacement, e.g. moving from
Teradata to Snowflake. But the fast lane is harder: your business logic is trapped in a
monolith and your data is trapped in legacy systems with no easy migration path to
modern, cloud-native alternatives.

In the following sections we discuss how to successfully tackle modernizing the fast
lane of data.

https://www.gao.gov/assets/gao-19-471.pdf

02
Challenges and

Opportunities

Most enterprises understand that transformation of

traditional RDBMS applications goes beyond simply

moving workloads to cloud infrastructure and services.

However, there is less awareness about what exactly makes transformation to cloud-native

technologies challenging coming from legacy RDBMS systems. A quick understanding of
the benefits of a cloud-native application viewed from the context of traditional RDBMS
application design principles can be helpful in understanding why transformations can be

both rewarding and challenging for the enterprise.

Distribution

Design

Scaling

Processing

Access

Consistency
Enforcement

RDBMS

Designed to have a single source of
truth; local replication is fragile and
XDC (cross-datacenter) replication is
even worse.

Consistency-focused. Enforced with
locks and constraints at the data layer.

Must be scaled as a whole since the
data represents an inter-connected
monolithic structure.

Synchronous processing allowing easy
transaction isolation.

APl is typically an application data
access layer that interfaces with stored
procedures that place some business
logic to be executed within the data layer.

Pessimistic locking enforced directly by
the data layer. The resulting contention
creates performance and operational
challenges at scale.

Cloud Native

Local and XDC replication are built-in and
reliable. Eventual consistency between
systems is a fact of life; the source of truth
is context-dependent.

Query based design focused on performance.
Consistency is dependent on the application
design and not enforced at the data layer.

Modularized, query based design allows for
individual scaling of application components
and data structures. It is easy to scale specific
microservices for an application in response
to changing requirements or demand.

Optimized for asynchronous data flow,
e.g. with publish/subscribe processing
with exception handling, rather than direct
stateful connections to data sources

APIs are assembled from cloud native
microservices that each are independently
responsible for their own persistence and
internal consistency.

Optimistic locking methodologies (detecting
change) combined with consistency protocols
such as Paxos and atomic batch mutations.
Design patterns use reconciliation as
enforcement.

DS

Relying on a relational database to enforce consistency creates performance
challenges because RDBMS architecture precludes scale-out. Partly in response to this,
applications evolved to place their code, including business logic, as close to this
enforcer of consistency as possible. Thus, most such systems have a data platform
layer that is very tightly coupled to the application itself.

Transformation of these applications is a process of freeing the application from its
data layer constraints and allowing the application to take advantage of the scale,
availability, and modular time-to-market that cloud technologies offer. The constraint
that holds back RDBMS-to-cloud transformation projects in enterprises today is the
existing application dependency on the data layer for data consistency. This is most
easily seen in an application’s stored procedures, triggers and the transactional SQL that
the application uses.

By freeing business logic trapped in the forms of stored procedures, joins, and queries
that are tightly coupled with the monolithic database and turning them into lightweight
independent microservices, you open up a new world of opportunities. As an
architectural style, microservices can structure an otherwise large and complex
application into a collection of services organized around business capabilities. Each
service or business capability can be owned by a small team. This approach results in
the agility to deliver fast and frequent delivery of smaller but more reliable applications
to the business. In addition, it enables the organization to evolve and modernize its
technology stack.

DS

03

Modernizing
the Data Layer

Microservices must own their own consistency methodology

Moving responsibility for consistency from the database to the service layer is the
fundamental task of any RDBMS application transformation/modernization project. If the
issue of moving consistency ownership from the data layer to the service layer is not
addressed by the transformation, the result will be an application that neither benefits
from the strong consistency design of RDBMS nor has any of the modular scalability and
availability that cloud design has to offer.

Many teams’ transformation projects face hurdles because they don't account for the
complexity inside the data layer and its implied behaviors and functionality. As the
transformation process carves the monolithic structure of the RDBMS database into areas
that naturally interrelate, the elements requiring transactional consistency become key
considerations and must be moved to a cloud native enforcement methodology from a
centralized, two-phase-commit methodology. While this is trivial for simple transaction
types, many RDBMS applications have developed very complex patterns of business logic
that are enforced using elaborate transactional code that requires performance-reducing
locking (either in stored procedures or SQL from the client application), or even
two-phase-commits across multiple systems.

Migrating this type of logic, executed in the data layer itself, to a microservices
architecture without a monolithic data structure is the challenge enterprises face. If an
order must verify inventory to complete, and inventory is just-in-time managed by its own
microservice, and the customer needs to go through a fraud detection and validation
microservice, how can my developers put all of that together without the monolithic data
layer they've become used to?

The answer is in moving to a saga pattern of consistency verification. Complex
transactions are now broken into many simpler, domain-specific microservices that can
be orchestrated and managed. This allows each service to own consistency for
transactions or elements of transactions within its service domain, but also allows the
service to offer an ‘undo’ or ‘roll-back’ tag for each transaction.

DS

https://microservices.io/patterns/data/saga.html

Each service maintains responsibility for its own data consistency. Should a failure of a
particular part of a microservice spanning transaction occur, the transaction can be
unwound according to established service commitments, using the ability of each service
to unwind its own transactional elements as required.

By decoupling complex business logic from the monolithic data layer, you restore the
database’s original purpose for storing and retrieving data in a performant manner,
instead of making it an unnatural central point of integration for all kinds of applications
and compromising its performance.

Data API is critical for the future of transformation projects

Another critical component for a successful transformation is a highly scalable and open
data API layer that is aware of the underlying data topology, while remaining agnostic
about the underlying database itself. The Data API layer becomes the perfect interface
for developers engaged in digital transformation projects: it offers a bridge from the
developer’s desire for easy cloud persistence, to multiple open cloud technologies that
together provide operational distributed consistency. In particular, the capabilities of
Cassandra to manage Paxos transactions, replication and distribution, and persistence
can be combined with Pulsar’s stream processing and effectively-once delivery, giving

developers the ability to build new transaction types with a straightforward and unified API.

Advanced high-level types such as consistent distributed ledgers, distributed inventory
buckets, exchange tickers, status trackers, etc can all be presented to the developer
using the Data API layer, removing the developer’s need to model and re-design these
often-utilized design patterns requiring strong consistency. This also presents an
opportunity for saga enforcement commitments to be added to common transaction
types, making it easier for developers to adopt the saga transaction pattern natively into
their microservice design.

Testability

The ability to test and validate query patterns and methodologies through the migration
process is also important, as well as more challenging to get right than they first appear.
To aid with this, DataStax has developed a set of tools to standardize and accelerate
testing capabilities at each phase of the transformation process.

These tools allow enterprises to easily define test data, to develop automated service
level smoke tests using consistent performance metrics and repeatable load, to test both
persistence and streaming using the same stack, to define and validate service scaling
with confidence knowing test data and scenarios are a match for production scenarios,
and to and collect performance metrics across all of these.

All of these are critical in determining the capabilities and scaling parameters of newly
defined services.

DS

04
A Data Architecture

for the Fast Lane

Migrating to a microservice-based architecture
means that dev and ops teams need to stitch
together many different products and technologies.

If the different products and technologies are not brought together in a consistent
fashion, you end up with a chaotic, unsupportable ball of spaghetti as each team solves
problems in a different way, creating new technical debt.

DataStax provides a unified, consistent, and opinionated platform that allows IT to
support microservice-based applications efficiently and effectively as you deploy
and update these services into the future.

Developers

$ STARGATE

API| Gateway [REST, GraphQL, JSON, CQL, advanced types]

Database - Cassandra Streaming - Pulsar

kubernetes

Astraps Enterprise

Managed Cloud Service Self-Managed
AWS, Azure, GCP AWS, Azure, GCP / VMware, OpenShift

DS

This starts with Stargate, the Data API layer. Stargate eliminates the friction of
interacting with stateful infrastructure from modern microservices by exposing data
services via cloud-native APIs like GraphQL, REST, and Schemaless JSON.

Underneath this API, database and streaming services are provided by Apache Cassandra
and Apache Pulsar, respectively. These offer open-source solutions to the challenges of
performance and reliability at scale and across datacenters and clouds. This is the core
of data modernization: replacing expensive and fragile relational database technology
with Cassandra, Pulsar, and orchestrated microservice transactions.

All of these services are orchestrated with Kubernetes to enable the infrastructure to be
deployed and managed in a uniform fashion on-premises and in the cloud. Kubernetes
has matured beyond managing simple stateless infrastructure. With the introduction of
components like stateful sets and persistent volume APls, it performs convincingly as the
control plane for not only disposable application pods but also your entire data platform.

We ship a common set of Kubernetes automation tools in two ways: first, to run
Cassandra as a Service in the form of DataStax Astra on the public cloud of your choice,
with up to five nines of availability; and second, to automate the deployment and
operations of DataStax Enterprise on the on-prem distribution for Kubernetes.

Both of these flavors take the lessons DataStax has learned in managing Cassandra
operations at scale and distill them for the enterprise. This allows enterprises to deploy
and run their data operations without the need to manually manage a lot of Cassandra
clusters individually. This is important for the enterprise to have the capability to manage
cost, security, and data compliance issues. In particular, DataStax Enterprise will bring
cloud-like serverless infrastructure to on-premises deployments, reducing costs with
multi-tenancy as well as compute and storage that can be scaled separately.

Q’Q‘

.

<

DS

05

Building the
Migration Plan

Once you have committed to modernizing your

data layer, you need a migration methodology

that has proved effective with other enterprises.

There are several phases to building a proper migration plan to transform an
application, with each producing an outcome that feeds into subsequent phases.

Investigation

Determine the database topology, size, design, schema, utilization patterns, query
patterns, and dependencies of the application to be transformed.

Identification

Identify the function, purpose, and use of each data structure. Group data structures
and elements that work and function together. What tables are often selected together
with a join? What tables are often used together in a stored procedure? What enforced
constraints exist between database structural elements? As clumps of functionality
coalesse from this exercise, the monolithic database will become understood as a
collection of interconnected service elements.

Objectification

Determine a persistence and object model for each functional group identified through
the prior processes, yielding a new distributed schema design for data persistence.

At this point, there should be a place in the old system as well as a place in the new
transformed architecture for each data element that will be a part of the transformation,
as well as a Cassandra DDL schema that may be directly loaded to Astra.

DS

10

Functional Isolation

Identify the interface between the application and the data layer. Every bit of logic and
code that is below that interface data layer must be incorporated into its appropriate
microservice, or the new transformed application API layer. This code can be found in
queries, the application itself, or stored procedures. Wherever it starts, the important
thing is to isolate the functionality to a single service.

Since each microservice is responsible for its own data integrity, the microservice must be
functionally isolated from the rest of the environment. This means that occasionally data and
functionality will need to be duplicated between services. Documenting and understanding
duplication patterns allows distributed applications to be architected more efficiently.

The result of functional isolation is a clear understanding of each original data element,
an understanding of the input and output requirements for each new service, and where
data and logical structures are duplicated between services. Functional isolation is also
the phase where additional service interfaces may be defined to extend functionality.

Transactional Process Identification and Documentation

The transactional elements of the application that have been managed by the
monolithic data layer must be identified and documented. These transactional
processes will break down into the broad categories of:

© Simple transactions that can be managed within a single instance of a service
for consistency

© Transactions that must maintain consistency across a pool of like services. These
transactions must deal with the consistency problems arising from having multiple
potential actors accessing a single data element concurrently.

© Complex transactions that must be managed across multiple services to maintain
proper consistency. These are transactions with multiple potential simultaneous
actors that must also be consistently persisted in multiple databases or locations.

The core technical essence of digital transformation is taking transactions that have
been managed at the database level and moving them to the service level.

While a legacy application will often have a single DAL (Data Access Layer), each of the
new services will also have a data access layer. Simple transactions of the first type
above and most of the second type can be moved to this service layer. Complex
processes across multiple services may potentially be more effectively implemented
closer to the application in the API layer. Wisdom and consideration of the transaction
and the overall application strategy should be considered when designing
transformation of these processes.

DS

1

Operational Migration Process Definition

With legacy data structures understood and transformed and the new data elements
designed and documented, it is possible to plan the operational migration process.

This involves physically removing responsibility from the legacy systems and transferring

application servicing responsibility to the transformed system(s). This is most often
accomplished in phases, and while the systems are live. There are two major elements
to the physical migration process:

© ETL- Extracting the legacy data, transforming it and replicating it as appropriate in
a consistent manner to the transformed architecture.

© CDC - Change data capture is the process of maintaining consistency between two
live systems by capturing the writes to one system, and then transforming and
populating the write to another system in near-real-time. This is used to keep legacy
and transformed systems consistent throughout live migration processes. Often,
enterprises will modify legacy systems to emit an application event on a message
broker such as Kafka that is then consumed by modern systems. This can be a
simple first step into transformation for many organizations, without a full CDC
implementation.

Migration Methodology

Most often the strangler method of migrating to modernized services is used. Using this
method, write and mutation patterns are duplicated between the legacy system and the
transformed services. This allows for applications to start using the new services for a
period of time while other application elements may continue to use legacy interfaces.
As all application requirements for the legacy platform are added to the new one, the
legacy platform itself is then removed, leaving behind only the transformed services.

This methodology is useful as a starting point, but often, transactional elements in the
data architecture present transformational friction that can be difficult to overcome.

In the worst case scenario, the enterprise is unable to complete the migration and ends
up having to maintain the legacy system indefinitely, as well as the new one, leaving it
worse off than when it began.

Sometimes transforming just a portion of an application can yield the benefit and the
cost savings desired, but often, real value is only realized when legacy systems can be
shut off for good. To make sure that our enterprise partners can succeed in completing
the migration efforts that they start, DataStax has turned the lessons we have learned
from experience into automated tooling that makes it easy for developers to solve the
hard problems of consistency in the execution of transformation projects.

DS

https://martinfowler.com/bliki/StranglerFigApplication.html

06
Automated

Migration Tooling

DataStax has developed tooling to accelerate
each of the transformation/migration steps.

Migrations Migrations Production Post Migration

Assessment Tools Planning Tools Migration Tools Verification Tools

4 N ' N / N 7 N
ETL Tools
Source DB Asset Source Table Source Data Extraction and Query Performance_
Inventory Extractor Analyser Transformation for Historical Measurement & Comparison

Data Migration

Source Metadata and Source Query CDC Tools Sourge & Target
Logs Extractor Analyser Data Verification
L J _ J
Cluster Build h
(Related Source Tables) Source & Target -
DSE Kafka Connector Query Output Verification
Recommender
\ J
Cassandra Schema DSE DSbulk

Modeler / Recommender

DSE Spark Connector

Stargate

Pulsar Connector

12 DS

These migration accelerators are portal-based tools that assist the enterprise with the
full lifecycle of the migration effort.

1. First, assessment tools assist with the challenging task of properly interrogating the
original database sources for requirements and query patterns. The discovered
patterns are then used to establish collections of tables and data structures that
should be migrated together or be grouped into a single service.

2. The planning tools then assist the developer with establishing an appropriate object
and Cassandra data model for cloud persistence.

3. Production migration tooling allows for migrations to occur with live systems and
maintain enterprise consistency. This includes technologies such as Pulsar, Stargate,
as well as CDC and ETL tooling.

4. The tooling also validates the transformed data patterns against the legacy
transformed data to ensure each data element has moved and is being treated in
order to maintain consistency.

Once the tooling has defined both the transformation patterns and the transformed
data model, the developer can easily add the produced structures to source code
repositories, making changes and further development easy using standard enterprise
development tooling.

Proper development requires data to work with and evolve with application code.

The initial phase of migrations are often challenging because the data structures to

be built are often not populated until ETL services are established later in the process.

To address this, DataStax has released the open-source NoSQLBench tool that allows the
newly-defined data structures to be populated with synthetic test data and queried with
workloads that are both repeatable and respect the defined structural consistency.

Test workloads and data can be maintained in a repository alongside schema
configuration for the transformed service. Having the ability to deploy a database on the
fly, populate that database with safe test data that maintains structural integrity, then
quickly iterate through versions using standard developer tools, dramatically accelerates
the developer efficiency in completing RDBMS transformation projects.

13

DS

https://www.datastax.com/blog/nosqlbench

o7
Successful

Transformations

DataStax has worked with the largest enterprises

across all industries to transform their RDBMS

applications into microservice architectures based on

cloud-native infrastructure. Here are two examples:

14

Logistics

A large international shipment provider found themselves limited by their monolithic
RDBMS system. As an international carrier, when the internet to their North American
datacenter was disrupted or an international link experienced an outage, delivery service
around the globe would grind to a halt. This package delivery provider needed a
distributed data architecture to provide always available data service that was just not
possible with legacy technology.

By using DataStax’s expertise and services, the shipment provider was able to integrate
transformation skills, tools, and processes into their enterprise development practices,
establish enterprise cloud standards, and replace their operational core in just a few months.

After its transformation, this logistics provider has accelerated their agility in growing
their business and bringing new innovative services to market, executing on M&A
activities, and is no longer vulnerable to potential global network failures. New cloud first
development standards have been adopted and dramatic operational and license savings
have been realized.

In 2020 Covid-19 had a dramatic impact on society and business, particularly impacting
the shipping industry with unanticipated demand spikes. The logistics provider was
able to handle the change in the business environment without a hitch as a result of
the transformed and scalable data infrastructure that had been implemented. The
transformation allowed this shipment provider to scale data volumes, to add new
services, and to implement new processes quickly while maintaining and exceeding

the SLAs to their customers.

DS

15

Retail

A large big-box retailer needed to expand their online sales and operations but found
themselves limited by the proprietary RDBMS system on which they depended for
order, inventory, catalog, and some logistical elements. Initially, it appeared there
would be no way to scale to meet their online competitive business requirements.

DataStax assisted this retailer in carving out the critical data structures that were
targeted for transformation. Initially, fourteen microservices were defined and created
that would take primary responsibility for the functions that were constrained by legacy
technology. Subsequently, this modernization pattern was adopted and applied
enterprise-wide.

By moving the enterprise web presence to the new microservices architecture, the
retailer was able to greatly improve its customer experience, resulting in dramatic
sales improvement. Then, when Covid struck the retail world, this provider was in a
strong technology position, with a data platform that was easy to build on and ready
to scale. This enabled them to implement rapid curbside pickup in under thirty days
from idea to production reality, resulting in improved customer satisfaction and
significant growth in sales.

DS

08

Conclusion

Modernizing an Enterprise’s data platforms is difficult;

when it is done right, the rewards are enormous.

16

Architectural and implementation choices make this modernization more complex, but
still possible. Successfully completing such a modernization requires a systematic
analysis of the benefits and risk for each system and component, with a forensic plan
for modernization as described in this paper.

As an enterprise gains experience and expertise in the modernization process, its teams
can elevate from hand-crafted solutions to an industrial process, realizing at each stage
the benefits of the modernized data platform and the ability to meet and exceed the
enterprises demands for data for digital engagement, with the economic benefits of
re-architecting for the cloud.

DataStax has helped some of the largest, most successful enterprises in the world
modernize their data platform and to migrate legacy applications, unlocking massive
present but unrealized business potential. Through experience, DataStax has identified
the technical hurdles around transactional consistency to be the primary impedance to
enterprise transformation success. DataStax has distilled this experience into tooling to
assist the enterprise with these challenges and drive successful transformation projects.

DS

